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Abstract—Delaunay triangulation (D-TIN) is an important
graphic tool in computational geometry, which is not only
widely used in many real applications, but also very sig-
nificant for many spatial data mining algorithms. However,
constructing Delaunay triangulation is time-consuming for
most practical applications. Distributed and parallel computing
mechanism is becoming a good choice to solve large scale and
compute-intensive D-TIN applications. This paper proposes a
novel hybrid algorithm (HA) for D-TIN construction in cloud
computing environment, which is based on a balanced binary-
tree model and an elegant data structure called quad-edge. HA
combines the divide & conquer approach and the incremental
method. Moreover, a distributed and parallel version of Delau-
nay triangulation computing service in cloud is designed and
implemented.

The hybrid algorithm performed in both centralised and
in cloud environments are compared. Experimental results
showed that the hybrid D-TIN service outperforms both the
the divide & conquer one and the incremental one, and
it can effectively provide higher data mining services with
fundamental D-TIN construction function in cloud.

1. Introduction

Delaunay triangulation is the geometric dual of Voronoi
diagram, and it has been one of the fundamental data
structures of computational geometry over the past few
decades [1]. For a dataset with n sites, the Voronoi Diagram
is a subdivision of the plane into n regions, each region
corresponds to one site. The region for a given site consists
of that portion of the plane closer to it than to any other
sites. Both Delaunay triangulation and Voronoi Diagram are
widely used in many applications, such as geographical in-
formation system (GIS), terrain analysis, computer graphics
and computer vision, virtual manufacturing, finite element
analysis, road CAD technology, etc. [2], [3].

Delaunay triangulation and its dual Voronoi diagram are
widely used to capture the spatial neighborhood relation-
ships between geographical objects. Geographical knowl-

edge can be extracted from the dataset according to the
spatial proximity represented by Delaunay triangulation [4].
Hence, to design and develop graphics tools and related
algorithms to compute Delaunay triangulation is interesting
in the area of knowledge discovery in spatial databases.

The strategies to compute Delaunay triangulation for a
set P of n sites can be divided into two categories: the direct
and the indirect methods. The indirect method is to construct
the Voronoi diagram (V or(P )) first, and then obtains its
dual Delaunay triangulation T (P ); while the direct meth-
ods compute Delaunay triangulation directly, typical direct
methods include randomised incremental algorithm (IA),
divide & conquer method (D&C), and plane sweep-line
approach [5]. Time complexity of the incremental algorithm
for inserting n sites is approximately O(n2), and both the
divide & conquer method and the plane sweep-line approach
have intrinsic predominance in term of time complexity
O(n log n). However, the incremental algorithm is competi-
tive with regard to the other methods for several reasons [6].
First, IA is much easier to implement due to its simplicity,
and it is applicable to various datasets especially when their
sizes increase dynamically. Second, if the site set is sampled
with a uniform probability distribution, the expected time
for each insertion is small and roughly independent of n,
the processing time is then dominated by site location. For
the simple walk algorithm [7], [8], to locate a site in an
existing triangulation, the expected time is roughly O(n

1
2 )

for each site, so the total computational time of IA is O(n
3
2 )

[9]. As a result, the performance can be quite acceptable in
many real-world applications, even when the sites are given
in advance. Thirdly, in many practical situations successive
sites tend to be close to each other. Consequently, the edge
returned in the previous call can be used by the location
process as its starting point, each insertion may take roughly
a constant time. In such cases, the incremental method may
perform better than the divide-and-conquer even for a large
number of sites [10].

In many GIS applications, datasets are distributed a-
mong different geographical locations, so the construction
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of Delaunay triangulation both on local datasets and global
dataset are usually required [11], [12]. This constitutes a
preliminary work on performing distributed spatial data
mining. The main goal of this paper is to focus on a
hybrid algorithm to construct local and global Delaunay
triangulations simultaneously and to explore an effective
mechanism and implementation of distributed & parallel
D-TIN in a geographical knowledge service cloud, called
GeoKSCloud. This will take a full advantage of the high-
performance computing capability of cloud and provide
high-level spacial knowledge gird services with complete
spatial neighbourhood relation graph.

The rest of this paper is organised as follows: Section 2
describes in detail the hybrid algorithm to construct Delau-
nay triangulation. In Section 3, we elaborate on the design
and implementation of a distributed & parallel Delaunay
triangulation service in GeoKSCloud platform. Section 4
presents experimental results with contrast evaluation of
the hybrid algorithm on centralised and cloud environment.
Finally, we conclude in Section 5.

2. Hybrid Algorithm for Delaunay Triangula-
tion

In this section, we introduce a hybrid technique for per-
forming Delaunay triangulation. The technique combines the
divide & conquer and the incremental algorithms. Consider
a site set P of n points in the plane and let θ be a threshold
which is set to a default value log2 n. The basic idea of the
hybrid algorithm (HA) is described as follows:

If the scale of problem P is under threshold θ, then
incremental algorithm (IA) is used directly to compute the
corresponding Delaunay triangulation. Otherwise, the prob-
lem P is partitioned into two approximately equal size of
sub-problems, namely left sub-problem (L) and right sub-
problem (R), and the related Delaunay graphs T (L) and
T (R) of L and R sub-problems are computed respective-
ly. During the process of problem partition, we continue
to divide the sub-problems recursively until the scale of
sub-problems (Li) and (Ri) is less than θ. Subsequently,
incremental algorithm is adopted to construct Delaunay
triangulations for (Li) and (Ri), and the result Delaunay
triangulations T (Li) and T (Ri) for (Li) and (Ri) are
merged gradually until the global Delaunay triangulation is
obtained. The principle of problem decomposition and sub-
Delaunay triangulations merging for the hybrid algorithm
(HA) is shown in Fig 1.

Two main steps of HA algorithm: “the divide and con-
quer” and “the incremental” are more adequate to run on
distributed platforms and mainly for very large Delaunay
Decomposition problems. Through tight combination of
these two steps this new approach inherits the advantages
of high-adaptability, simplicity of the incremental algorithm
and the advantages of high-efficiency, autonomy of divide &
conquer algorithm [13]. At the same time, it overcomes the
fatal drawback of a large number of recursions involved in
divide & conquer algorithm without a significant reduction

in the efficiency. In particular, in a distributed environment,
it avoids a large number of network communications and
hence improves its performance.

3. Distributed D-TIN in Cloud Environment

GeoKSCloud currently includes all the features owned
by computational cloud and data cloud. Once a knowledge
service is deployed; it can be monitored, discovered, shared
and called by every node of the cloud. After introducing
large amounts of spatial data mining services and spatial
decision-support services, GeoKSCloud has different kinds
of knowledge service capabilities, such as spatial clustering,
spatial association rule mining, spatial outlier detection and
urban air pollutant dispersion simulation that are needed by
various applications. Through years of research on spatial
data mining algorithms and the mechanisms of cloud service
interoperability, several main function modules have reached
maturity and provide better and reliable distributed spatial
knowledge services with OGSA architecture. Typical mod-
ules include cloud resource center, cloud information center,
execution management center, knowledge service center, and
cloud platform management center with a uniform cloud
portal interface. Moreover, GeoKSCloud provides a novel
problem solving environment that will enable the in-depth
study of distributed Delaunay triangulation algorithms in
cloud environment.

In GeoKSCloud environment, the new approach consists
of two atomic services, namely the divide and conquer
service and the incremental service. The two services are
encapsulated and deployed independently as atomic cloud
services on different cloud nodes in GeoKSCloud. Jointly,
called D-TIN service, the two services constitute an
integrated distributed Delaunay triangulation services. Once
a cloud service is successfully started in any cloud node, it
is ready for the client to invoke a cloud service everywhere.
More detail information about the mechanism of parallel
and distributed computing in GeoKSCloud can be found in
[14], [15]. The key steps of a distributed version of the
hybrid algorithm in a cloud environment are as follows:

1) Sort the sites in ascending order, that is (xi, yi) <
(xi+1, yi+1) if and only if xi < xi+1, or xi = xi+1

and yi < yi+1.
2) Find an available cloud node to carry out the D-

TIN construction on the site-set P. This initial cloud
node should be able to invoke the hybrid D-TIN
service.

3) If the problem size is smaller than a specified
threshold, compute the Delaunay triangulation di-
rectly and return the result of D-TIN to the user.

4) If the problem size is greater than the thresh-
old, partition the problem into two adjacent sub-
problems of approximately equal size, and find two
available cloud nodes to deal with them. GOTO
Step 3.

5) Once the division of the initial problem into small
sub-problems has been finished, the sub-problems
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Figure 1. Problem decomposition and sub-Delaunay triangulations merging in HA.

are performed in parallel on their corresponding
cloud-nodes. Each sub-problem will generate a sub-
graph. This partitioning forms a binary tree, in
which the leaves represent the sub-problems.

6) Merge every two adjacent sub-graphs starting from
the bottom (leaf nodes) of the tree using the merge
algorithm of divide & conquer. This is repeated at
every level of the tree until we reach the root of the
tree, which represents the initial cloud node with
the whole site set P.

3.1. GeoKSCloud Processes

The execution and scheduling flowchart of distributed
& parallel Delaunay triangulation in GeoKSCloud is shown
in Fig 2. When a Delaunay triangulation is submitted and
registered to the cloud platform, the execution management
center (refers to GRAM by Globus) will find and invoke an
available hybrid D-TIN service to perform the task.

In practical D-TIN construction applications, after a job
has been submitted to the cloud platform, a hybrid D-TIN
service can be invoked. If the problem scale is smaller than
the threshold, the execution management center will invoke
a cloud server to deal with the problem. If the scale of the
problem is greater than the threshold, two cloud servers are
invoked; one for each sub-problem.

As shown in Fig 2, the merge step keeps waiting until
all the two sub-problems have been solved and the sub-
graphs have been returned to their parents. In order to
optimize the distributed version of the hybrid algorithm,
for both computation and communication times, the cloud
platform will allocate only an extra node instead of two
to complete the two sub-tasks. Therefore, one needs to
find a cloud server to deal with one sub-problem while
the other sub-problem is processed by the local node. In
this way, not only it reduces the response time due to data
transmission between nodes, but also reduces the application
requirements in terms of resources.

3.2. Implementation

The most important task of the proposed distributed
& parallel D-TIN construction service in a cloud is to

implement two atomic D-TIN services: the Hybrid D-TIN
service and the incremental D-TIN service.

Guibas and Stolfi [16], [17] proposed an elegant quad-
edge data structure for representing graph embedding on
two-dimensional manifolds, which simultaneously repre-
sents a structure and its dual. In this paper, this idea is adopt-
ed to represent Delaunay triangulation. The implementation
of the divide & conquer algorithm, incremental algorithm
and the hybrid algorithm benefitted hugely from quad-edge
data structure and mainly the integration of the incremental
algorithm into the divide & conquer algorithm.

The pseudocode for the hybrid algorithm of D-TIN
construction is shown in Algorithm 1, which greatly exhibits
the idea of divide & conquer. The two sub-problems L &
R are processed in parallel when the scale of the problem
is higher than the threshold. As to the principle of cloud
encapsulation and deployment of D-TIN service, it can be
referred in [18], [19]

Algorithm 1 Pseudo-code of Hybrid D-TIN Service.
Input: A site set s[] in ascending order.

A Specified threshold θ for distributed D-TIN
construction
Output: Delaunay Triangulation for the site s[].
Procedure CreateDTINbyDistributedHybrid(s[])
return D-TIN

// if problem scale ≤ θ, find an incremental service to do
the job
If (size ≤ θ) //invoke an incremental D-TIN service

Return invokeCloudService(S, “Incremental”);

// problem scale > θ, divide S into 2, find 2 hybrid service
to solve them
D-TIN LeftDtin = invokeCloudService(L, “Hybrid”); //for
L
D-TIN RightDtin = invokeCloudService(R, “Hybrid”);
//for R
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Figure 2. Distributed D-TIN Construction in Cloud Environment.

Algorithm 2 Pseudo-code of Incremental D-TIN Service.
Input: A site set s[]
Output: Delaunay Triangulation for the site s[].

Procedure CreateDTINbyIncremental(s[]) return
D-TIN
Return getDTINbyInsertion(s); //create D-TIN by incre-
mental

3.3. Cost Model

Assume that the size of D-TIN computing problem is n,
and the threshold for parallel & distributed D-TIN comput-
ing is θ. Let k be the number of nodes needed to process sub-
problems of size m ≤ θ. Then, the number of subdivisions is
easy to calculate according to the mechanism of the hybrid
algorithm. Based on the algorithm described above, the
division of the problem consists of a binary tree. Therefore,
k is of the form k = 2ω, such that 2ω−1 < dnθ e ≤ 2ω.

For a site set of n points, the hybrid algorithm divides
the problem recursively into two approximately equal sub-
problems. Let T1(n) be the response time for the sequential
version and Tk(n) be the response time for the distributed
version with k processors. T1(n) would be the sum of
the computation time by the incremental algorithm and the

merging time of the two sub-problems, while Tk(n) would
be the sum of the computation time by the incremental
algorithm, the merging time of the two sub-problems and the
communication time between the server and the clients. Let
TIA(m) be the computation time of incremental algorithm
for a problem of size m, Tmerge(m) be the time for merging
two subproblems of size m

2 each and Tcomm(m) be the
time for exchanging dataset of size m among the servers
and clients. So the response time for the sequential version
T1(n) and the distributed version Tk(n) would be:

T1(n) = kTIA(m) +

ω∑
i=1

k

2i
Tmerge(2

im) (1)

Tk(n) = TIA(m) +

ω∑
i=1

(
Tmerge(2

im) + Tcomm(2i−1m)
)

(2)
Because Delaunay triangulation can be computed in

O(n log n) by using the divide & conquer algorithm and in
O(n2) by using the incremental algorithm. Therefore, time
complexity for D-TIN construction in the leaf node with
m points would be O(m2) by the incremental algorithm,
and the corresponding time for merging two sub-problems
L and R in the internal nodes would be O(2m) by the hybrid
algorithm.

As for the communication time in the distributed version
of D-TIN construction, a data structure QuadEdge is adopted
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to fully express the spatial topology of the Delaunay triangu-
lation and its dual, so the main source of data transmission
between the clients and the servers is a series of QuadEdge.
For a site set of n points, there are 3n+6 edges at most in
the corresponding D-TIN. As a result, the communication
time depends on the number of QuadEdge.

To sum up, the response time for the sequential version
T1 is as follows:

T1(n) = km2 + [
k

2
(2m) +

k

22
(22m) + · · ·+ k

2ω
(2ωm)]

= km(m+ ω), (3)

Similarly, the response time for the distributed and parallel
version Tk is deduced as follows, because the sub-problems
with the same level in the binary tree structure are computed
in parallel.

Tk(n) = m2 + (2m+m) + (22m+ 2m) + · · ·
+ (2ωm+ 2ω−1m)

= m(m+ 3(k − 1))

(4)

From the equations (3) and (4), we can see that the
distributed version, Tk(n), outperforms the sequential ver-
sion, T1(n), by a factor k, especially when the problem
size becomes larger and enough cloud nodes are available
for the distributed version of D-TIN computing. Moreover,
according to the principle of the hybrid algorithm, it has two
special cases: 1) it can degenerate into the divide & conquer
algorithm if the threshold θ is smaller than 1. In this case we
need as many processing nodes as the size of the problem.
Therefore the communication time may dominate the whole
execution, which is not effective way of distributing the
algorithm. The second case is that the hybrid algorithm can
degenerate into the incremental algorithm if the threshold
θ ≥ n. In this case the number of processing nodes will be
k = 1, and the response time will be equal to the sequential
version’s response time.

4. Experiments and Discussion

We perform some experiments and compare the perfor-
mance of the hybrid algorithm of Delaunay triangulation
executed on one machine (sequential implementation) with
the distributed D-TIN service deployed in GeoKSCloud
platform. In the experiments, different problem sizes were
tested with a threshold θ ∈ [n8 ,

n
4 ]. Following the process

of distributed scheduling of the hybrid D-TIN service, the
problem is recursively divided into two sub-problems, find
and invoke k

2 different cloud nodes with the hybrid D-
TIN service and k cloud nodes with the incremental D-TIN
service. Fig 3 shows an example of this process with a site
set of 10000 points and a threshold of 2000. In the figure, the
rectangle denotes the hybrid D-TIN service, and the rounded
rectangle denotes the incremental D-TIN service. Both the
hybrid and the incremental D-TIN services are deployed
over the GeoKSCloud nodes.

1st
segmentation

: Hybrid Service : Incremental Servicenumber

10000

5000

: Threshold: Problem Scale

2500

1250 1250 1250 1250 1250 1250 1250 1250

2500

5000

2500 2500

 =2000

: Sub-problem is finished 
in local machine

: To find a hybrid 
D-TIN Service

: To find an incremental 
D-TIN Service

2nd
segmentation

3rd
segmentation

Figure 3. Example of distributed D-TIN construction with n = 10000, θ =
2000.

The number of sites and the corresponding executions
time are listed in the Table 1. The experimental results
indicate that the distributed & parallel D-TIN construction
service based on the proposed hybrid algorithm can be used
to compute Delaunay triangulation in cloud environment
in an efficient way. One can notice from the results that
the distributed version outperforms the sequential version,
especially when m is becoming larger and larger. This is not
really a surprise since more processing nodes are expected
to perform better than one, as it is expected in the theoretical
model.

Moreover the performance issue is not in the compu-
tation time, but in the communication time and the way
that the algorithm was parallelized on k processing nodes.
Therefore, the speed-up of the distributed version of the
algorithm can be affected heavily by the overheads due
to the communication times and other system activities.
One can notice that for smaller sizes of the problem, the
distributed version performs poorly against the sequential
version, as the communications count for large part of the
response time. From the last 3 columns of Table 1, we can
conclude that the communication time of the distributed
version counts for a significant proportion of the global
response time. However, the distributed implementation is
much better when the scale of the problem increases grad-
ually.

Fig 4 shows the experimental and theoretical execution
times of sequential and parallel versions of D-TIN based
on the experimental results reported in Table 1 and the cost
model developed in Section 3.3. Fig 4 (a) and (b) follow
exactly what was expected in theory (see equations 3 and
4). Particularly, the communication time between nodes in
the distributed version is well inline with the experimen-
tal results. The difference between the theoretical and the
experimental results is due to some other system activities,
such as the scheduling time of cloud services. Moreover,
we considered in our theoretical model that the commu-
nication time is proportional to the size of the problem
(linear progression), which is not really the case on cloud
platforms due to the network traffic and heterogeneity of
their resources. This is also reflected in these results. Overall
results of the distributed version of the hybrid algorithm are
promising and mainly for very large size of the problem.
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Prob.Size
(n)

Sequential Impl Para & Dist Impl (θ = dn
8
e)

θ = log2 n θ = dn
8
e Comm time Comp time Total time

40000 1.422 0.879 0.837 0.454 1.292
80000 2.797 2.291 1.603 0.939 2.541
120000 4.349 4.137 1.985 1.457 3.442
160000 6.265 6.428 2.590 2.291 4.880
200000 7.677 9.203 3.662 2.410 6.073
240000 9.563 12.164 4.053 3.213 7.266
400000 16.411 27.793 6.724 5.182 11.906
600000 26.349 51.533 12.480 8.994 21.474
800000 35.693 94.398 17.888 12.274 30.162

1000000 44.505 131.182 22.462 16.163 38.625
TABLE 1. TIME CONSUMPTION OF D-TIN CONSTRUCTION UNDER DIFFERENT CONDITIONS (TIME: SEC).
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(a) Experimental and theoretical execution time of sequential D-TIN (b) Experimental and theoretical execution time of parallel D-TIN

Figure 4. Experimental and theoretical execution time of sequential and
parallel D-TIN.

5. Conclusion

In this paper, a novel hybrid algorithm to construct
Delaunay triangulation in the plane was presented, which
combines the algorithms of divide & conquer and the incre-
mental. Through both theoretical and experimental results of
the approach on stand-alone and in cloud environment, the
hybrid algorithm outperforms the incremental algorithm, but
it is a bit weaker than the divide & conquer algorithm, which
also have an time complexity of O(n log n) for smaller sizes
of the problem.

An important advantage of the hybrid algorithm lies in
its simplicity to be transformed and deployed in a distributed
environment. Therefore, we designed and implemented a
distributed Delaunay triangulation construction service in
GeoKSCloud, to provide a general cloud service of D-
TIN construction for some higher knowledge services in the
platform. Although, there are many restrictions on getting
more efficient distributed applications in GeoKSCloud, the
recent advances in software cloud middleware will provide
practical distributed real-world applications, and with better
distributed & parallel Delaunay triangulation construction
services in the future.
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